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In this work, a family of high order accurate Central Weighted ENO (CWENO) finite volume 
schemes for the solution of nonlinear kinetic equation of relaxation type is presented. 
After discretization of the velocity space by using a discrete ordinate approach, the space 
reconstruction is realized by integration over conformal arbitrary shaped closed space 
control volumes in a CWENO fashion. Compared to other WENO methods on unstructured 
meshes, in the method here presented, the total stencil size is the minimum possible and 
the linear weights can be arbitrarily chosen. These two aspects make their use for kinetic 
equations and the practical implementation on general unstructured meshes particularly 
interesting. The full discretization is then obtained by combining the previous phase-space 
approximation with an Implicit-Explicit Runge Kutta high order time discretization which 
guarantees stability, accuracy and preservation of the asymptotic state. In particular, to 
guarantee in the finite volume framework space accuracy higher than two, a new class 
of IMEX methods has been set into place and its properties have been studied. The 
formal order of accuracy is numerically measured for different regimes, computational 
performances of the proposed class of methods are tested on several standard two 
dimensional benchmark problems for kinetic equations. The novel methods are finally 
applied to a prototype engineering problem consisting in a supersonic flow around a 
NACA 0012 airfoil. In our computations we employ up to ≈ 325 millions of degrees of 
freedom and 256 GB of RAM run on 128 cores with Fortran-MPI providing evidence 
that the above schemes are suitable for implementation on parallel distributed memory 
supercomputers.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Kinetic models provide a description of systems of interacting particles at different regimes [10,18]. This description of a 
gas relies on an equation for the time evolution of the so-called probability distribution function. This gives the probability 
for a particle to be at a given position, with a given velocity, at a fixed instant of time. Consequently, the full problem 
depends, in general case, on seven independent variables: three for the space, three for the velocity plus the time. On 
one hand, if this approach permits to detail a richer set of physical phenomena, on the other hand it makes difficult the 
realization of numerical simulations due to the well-known curse of dimensionality issue.
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The problem of the excessive computational cost can be overcome, at least in some situations, by probabilistic methods 
[10,17,80]. In fact, for steady state problems, the possibility to take time averages of the solution allows the computational 
cost to be reduced, especially in the multidimensional cases, while maintaining a reasonable accuracy. This, unfortunately, 
does not hold true anymore for unsteady problems, even if some remedies have been studied in the past [4,38,39,33].

Another strategy which has been shown to be able to deal efficiently with multidimensional kinetic equations has been 
recently proposed in [34–36]. This methodology is based on a Lagrangian technique [20,50,58,28,27] which exactly solves 
the transport step, and on a projection step to compute the collision term. This scheme has been successfully employed 
to compute the solution of a full six dimensional relaxation type kinetic equation. These simulations were run on a single 
core machine in a reasonable amount of time at least for small mesh sizes. In [37] also the full Boltzmann equation in the 
six dimensional space has been solved relying on the same scheme in synergy with spectral methods for the Boltzmann 
operator and high performance parallel computers. However that method, even if very efficient, exhibits limitations in term 
of spatial accuracy being the order of convergence restricted to one. Moreover, it presents limits in term of versatility being 
based on a regular Cartesian mesh.

In this work, we follow an alternative path and we pursue a direction which permits to have both high order accuracy in 
space-time and an excellent versatility of the numerical scheme to deal with different geometries due to the unstructured 
property on which the method is based on. The price we pay lies in the computational cost compared to [34]. We deal with 
three different levels of discretization of the underlying kinetic equation: discretization of the velocity space, discretization 
of the physical space and time discretization. For each of these variables, we choose a different strategy. As a first step, a 
classical discrete velocity, or discrete ordinate, models (DVM) approach [11,82,85] replaces the continuous kinetic model. 
The DVM models are obtained by discretizing the velocity space into a set of fixed discrete velocities [11,78,82,81]. As a 
result of this step, one has to deal with a finite set of linear transport equations with a source term which couples all the 
equations together. This source term describes the collisions or, more in general, the interactions between the particles. The 
necessity to truncate the infinite velocity space and to set a finite number of points in this space brings drawbacks from 
the numerical point of view [11,78,56,79] which will be discussed later.

In order to solve the transport part of the DVM model, many different techniques can be employed like finite differ-
ence, finite volume or semi-Lagrangian methods [52,78,29,77,64,94,95,90,91,84,58]. Here, we follow a finite volume strategy 
and we restrict our study to the relaxation approximation of the Boltzmann equation known as the BGK model [9]. In a 
finite volume approach, one stores and evolves the so-called cell averages of the distribution function on a computational 
grid. Entering into details, the high order space accuracy we ask for requires more spatial information. Classically, they are 
obtained by a reconstruction that produces high order piecewise polynomials from the known cell averages in an appro-
priate neighborhood of the control volume under consideration. Many reconstruction strategies exist, we recall the famous 
Weighted Essentially Non Oscillatory reconstruction (WENO) [66,21,88]. This interpolation method is rather simple and very 
efficient in the one-dimensional case and easily extends to multiple space dimensions if uniform Cartesian meshes are em-
ployed [92,49]. On unstructured meshes, however, high order reconstructions are less simple and we recall some pioneering 
works on this subject intended to face this problem [7,6,1] and later improvements [61,48,96]. We also recall two review 
papers which discuss some recent results on this subject [2] and [65]. The main difficulty in applying the WENO idea to 
unstructured meshes or to reconstructions at points inside the computational cells comes from the definition of the linear 
weights (see for instance [70] and [45] for a detailed discussion) and we consequently abandon this idea. In this work, we 
concentrate instead on a Central WENO reconstruction (CWENO) originally introduced in the context of conservation laws 
in the one-dimensional case [73], in order to obtain a third-order accurate reconstruction at the cell center that could not 
be provided by the classical third order WENO scheme. This technique was later developed for non-uniform meshes for in-
stance in [24] and [45]. Here, we extend these techniques to the case of kinetic equations on arbitrarily polygonal conformal 
meshes and, to the best of our knowledge, this is the first work in this direction.

The third type of discretization, i.e. the time one, is handled by using the so-called Implicit-Explicit Runge-Kutta methods. 
Kinetic equations are well known to represent a real challenge for numerical methods not only for the curse of dimension-
ality but also for the different space and time scales involved in their resolution. In particular, close to the fluid limit, 
the intermolecular collision rate grows exponentially and the collisional time becomes very small, while the fluid dynamic 
time scale conserves much larger values [18,43]. However, the use of standard implicit approaches, which in principle 
will be enough to solve the problem, are prohibited by the nonlinearity of the equations as well as by the dimension 
of the systems that have eventually to be inverted. Several authors have tackled the above problem in the recent past 
[43,68,69,51,8,25,26,30–32,41,42,40,44,75,76,62,63] by developing and studying the class of methods known as Asymptotic 
Preserving. These techniques allow the full problem to be solved in the entire domain for all choices of time steps and 
Knudsen numbers with a time step which is independent from the fast scale identified by the Knudsen number. In this 
work, we make use in particular of the so-called Implicit-Explicit Runge-Kutta methods [3,83,42] that are able to achieve 
high order, while maintaining the stability and the asymptotic preserving property. An important remark concerns the use 
of implicit discretizations in the finite volume context which can not be handled by direct application of the IMEX strategy 
as done for finite difference methods in [42]. In particular, to solve the problem of inverting the collisional term which 
cannot be directly done if high order in space has to be guaranteed, we rely on a splitting of the collision operator into 
a cell average plus a correction term. The first term is treated implicitly, while the small correction is treated explicitly as 
proposed in [13] in the context of balance laws in the one dimensional case. The Asymptotic Preserving property and the 
accuracy of this new method are studied.
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Summarizing, in this paper we introduce a novel CWENO-IMEX Runge-Kutta high order Asymptotic Preserving class of 
methods on arbitrarily shaped unstructured grids by reconstructing piecewise polynomials from given cell averages. These 
methods are successively tested on benchmark multidimensional rarefied gas dynamic problems. The formal accuracy is 
numerically tested for different regimes. Finally a more realistic test case involving a flow around a NACA 0012 airfoil for 
different values of the Knudsen number is performed. In order to demonstrate that the methods are also well suited for 
the implementation on parallel distributed memory supercomputers, a MPI parallelization is realized distributing the space 
variable on different threads. A profiling of the code is also reported. Alternative type of parallelizations can be explored 
but we do not consider this possibility here. A computation involving around 10 million cells and 100 million degrees of 
freedom, namely 6500 control volumes in space and 1600 cells in velocity space at third order in space-time, has been run 
on 128 cores. Extension of the above method to larger set of degrees of freedom is possible using larger high performance 
computational resources.

The article is organized as follows. In section 2, we introduce the BGK model, its properties and its fluid dynamic limit. 
In Section 3, we present the discrete ordinate discretization, including drawbacks and possible solutions. Then, in Section 4, 
the CWENO reconstruction and a first fully discretized method is shown in detail. In Section 5, the new IMEX Runge-Kutta 
schemes applied to the phase-space discretization of the kinetic equations are presented and the notion of asymptotic 
preservation and asymptotic accuracy is recalled. The strategy which permits to achieve high order in time accuracy in the 
finite volume framework is discussed and some properties of the schemes are also studied in this part. Finally, Section 6
is devoted to present several numerical examples of the schemes obtained up to third order accuracy in space and time, 
showing the capability of the novel methods to deal with such equations. Conclusions are reported in a final Section together 
with a discussion on future investigations.

2. Boltzmann-BGK equation

We consider kinetic equations of relaxation type as follows:

∂t f + v · ∇x f = ν

ε
(M f − f ). (1)

This equation supplemented by the initial condition f (x, v, t = 0) = f0(x, v) furnishes the time evolution of a non negative 
function f = f (x, v, t) which gives the distribution of particles with velocity v ∈ Rdv in the space x ∈ � ⊂ Rdx at time t > 0. 
Equation (1) is the so-called BGK equation or model [9,18]. In this model, the complex interactions between particles are 
substituted by a relaxation towards the local thermodynamical equilibrium defined by the Maxwellian distribution function 
M f

M f = M f [ρ, u, T ](v) = ρ

(2πθ)d/2
exp

(−|u − v|2
2θ

)
, (2)

where ρ ∈ R, ρ > 0 and u ∈ Rd are respectively the density and mean velocity, while θ = RT with T the temperature 
of the gas and R the gas constant fixed to R = 1 for simplicity. For simplicity, in the description of the method, we do 
the hypothesis that the dimension of the physical space is the same of the dimension of the velocity space dx = dv = d. 
However, the numerical method is not restricted to this particular choice and it is possible to consider different dimensions 
between the space and the velocity in order to obtain different simplified models.

The macroscopic values ρ , u and T are related to f by

ρ =
∫
Rd

f dv, u = 1

ρ

∫
Rd

v f dv, θ = 1

ρd

∫
Rd

|v − u|2 f dv, (3)

whereas the energy E is defined by

E = 1

2

∫
Rd

|v|2 f dv = 1

2
ρ|u|2 + d

2
ρθ. (4)

The parameter ν > 0 in (1) is the relaxation frequency which is defined as

ν = ρ (5)

other choices for the collision frequency can be considered such as ν = CρT 1−ω with C a constant and ω which depends 
on the type of gas under consideration. For example, in the case of Argon it assumes the value ω = 0.81 [19]. The parameter 
ε, instead, is the so-called Knudsen number and it is used to rescale the equation in time and space to ease the transition 
from the different time scales which characterize a kinetic model. The rescaling choice permits to study the different regimes 
easily. When the gas is dense and temperature is large, the relaxation frequency is typically very small. In this case, the 
gas appears macroscopically in equilibrium. In this situation, the flow can be described by a standard fluid model as the 
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compressible Euler system. This latter can be recovered in the limit ε → 0 from (1) by observing that, in this case, the 

distribution function tends to the local Maxwellian M f . The kinetic equation multiplied by 
(

1, v,
1

2
|v2|
)

and integrated in 

velocity space reads then

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂ρu

∂t
+ ∇x · (ρu ⊗ u + pI) = 0,

∂ E

∂t
+ ∇x · ((E + p)u) = 0,

p = ρθ, E = d

2
ρθ + 1

2
ρ|u|2,

(6)

i.e. it coincides with the compressible Euler equations, where p is the gas pressure. Using the Chapman-Enskog expansion 
higher order fluid models can be derived. In particular, the first order approximation of the distribution function f =
f0 + ε f1 gives f0 = M f and f1 = −(I − 
M)v · ∇xM f , with 
M the orthogonal projection into the space spanned by the 
equilibrium M f . This leads to the classical compressible Navier-Stokes equations

∂t

⎛
⎜⎜⎝

ρ

ρu

E

⎞
⎟⎟⎠+ ∇x ·

⎛
⎜⎜⎝

ρu

ρu ⊗ u + pI

(E + p)u

⎞
⎟⎟⎠= −ε

⎛
⎜⎜⎝

0

∇x · σ
∇x · (σu +Q)

⎞
⎟⎟⎠ , (7)

where σ = −μ(∇xu + (∇xu)T − (2/d)∇x · uI) is the stress tensor and Q = k∇xT the heat flux.

Remark 1.

• When the velocity dimension is d < 3, model (1) naturally gives rise, in the macroscopic limit, to gas laws which differ 

from the standard one used for describing dense fluid flows. In particular, one gets γ = 2

d
+ 1, with γ representing 

the ratio of the specific heats. Consequently, the one-dimensional case corresponds to γ = 3, the two-dimensional 
case to γ = 2 and the three-dimensional case to γ = 5/3. In order to overcome this problem and still avoiding 
three-dimensional discretizations in velocity, one can use the so-called Chu reduction [16]. The main idea, which this 
reduction relies on, is that under suitable velocity space symmetry assumptions, one can integrate the distribution func-
tion in the velocity phase space in one or two directions depending on the desired reduced dimension: respectively, the 
two- or the one-dimensional setting. This introduces an additional kinetic equation with a similar relaxation structure 
of the BGK one (1) and it permits to recover the correct equation of state obtained in the full three-dimensional case. 
Here, we do not make use of the Chu reduction and we postpone the use of such model and the relative issues to 
future investigations.

• Although the BGK model is able to describe the right hydrodynamic limit, it does not give rise to the correct Navier-
Stokes asymptotic limit since the transport coefficients obtained by the Chapmann-Enskog expansion differ from those 
derived from the Boltzmann operator. An alternative consists in using a different relaxation model which allows the 
correct Prandtl number to be recovered, such as the ellipsoidal statistics BGK model [59]. We postpone the study of 
such a model to future investigations since this will need to study ad hoc time integration schemes.

2.1. Boundary conditions

The BGK equation needs the definition of suitable boundary conditions in space for v ·n ≥ 0 and x ∈ ∂�, where n denotes 
the unit normal, pointing inside the domain �. Usually, as for the case treated at the end of the paper, the boundary 
represents the surface of a solid object (the flow around a wing profile) and the particles of the gas that hit the surface 
interact with the atoms of the object and are reflected back into the domain �. Such boundary conditions are modeled by 
an expression of the form [18]

|v · n| f (x, v, t) =
∫

v∗·n<0

|v∗ · n(x)|K (v∗ → v, x, t) f (x, v∗, t)dv∗, (8)

where K is a given boundary kernel which permits to define the ingoing flux in terms of the outgoing flux. This boundary 
kernel is such that positivity and mass conservation at the boundaries are guaranteed. One common choice is represented 
by imposing for the ingoing velocities the following relation
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f (x, v, t) = (1 − α)R f (x, v, t) + αM f (x, v, t), (9)

in which x ∈ ∂�, v · n(x) ≥ 0. The coefficient α, with 0 ≤ α ≤ 1, is called the accommodation coefficient and one has

R f (x, v, t) = f (x, v − 2n(n · v), t), M f (x, v, t) = μ(x, t)Mw(v). (10)

Here, Mw(v) is a Maxwellian distribution with unit mass, mean velocity corresponding to the speed of the object and fixed 
prescribed temperature, while the value of μ is determined by mass conservation at the wall, that is

μ(x, t)

∫
v·n≥0

Mw(v)|v · n|dv =
∫

v·n<0

f (x, v, t)|v · n|dv. (11)

In the numerical tests involving boundaries, we will consider specifically the case α = 1 corresponding to full accommoda-
tion in which the re-emitted molecules have completely lost memory of the incoming molecules, except for conservation 
of the number of molecules. A second type of boundary conditions are the inflow boundary conditions where one assumes 
that the distribution function of the particles entering the domain is known, i.e.

f (x, v, t) = g(v, t), x ∈ ∂�, v · n > 0.

A typical example of such condition is used in shock wave calculations, where one assumes that the distribution function at 
the boundary of the computational domain is a Maxwellian M f (v) and that the incoming flux is distributed according to the 
Maxwellian flux (v · n)M f (v), v · n > 0. Finally, outflow boundaries are simply treated by upwinding, thus the distribution 
function is advected out of the computational domain.

3. The Discrete Velocity Models (DVM)

In a Discrete Velocity Model (DVM), one replaces the unbounded velocity space with a bounded set by truncation of the 
tails of the distribution function, which normally lives in a non compactly supported set. Successively, one discretizes this 
new space by means of a finite number of discrete points representing the discrete velocities that the particles can assume. 
This approach can be seen as a numerical technique but also as a new model for describing out of equilibrium gases [85]. 
In any way one wants to see it, the result is that one has to deal from the numerical point of view with N linear transport 
equations coupled through a suitable discretization of the interaction operator [85,78]. We now introduce the method and 
the notations, taking inspiration from [78]. We introduce a Cartesian grid V

V=
{

vk = k�v + a, k = k(i), i = 1, ..,d, a = (a1, ..,ad)
}

, (12)

where a is an arbitrary vector, �v is a constant mesh size in velocity and where the components of the index k have some 
given bounds K (i), i = 1, .., d. In this setting, the continuous distribution function f is replaced by the vector fK (x, t) of 
size N . Each component of this vector is assumed to be an approximation of the distribution function f at location vk:

fK (x, t) = ( fk(x, t))k, fk(x, t) ≈ f (x, vk, t). (13)

Thus, the discrete ordinate kinetic model consists of the following system of equations to be solved

∂t fk + vk · ∇x fk = Q ( fk), k = 1, .., N, (14)

which in the case of the BGK model can be directly made explicit

∂t fk + vk · ∇x fk = ν

ε
(Ek[U ] − fk), k = 1, .., N, (15)

i.e. Q ( fk) = ν

ε
(Ek[U ] − fk) with Ek[U ] is a suitable approximation of M f , e.g. Ek[U ] = M f (x, vk, t), and U = (ρ, ρu, E)T is 

the vector of the macroscopic quantities. Since the Maxwellian distribution depends on the distribution function f through 
its moments, it is necessary to recover them also in the discrete case. They are obtained thanks to discrete summations on 
the discrete velocity space:

U (x, t) =
∑

k

φk fk(x, t)�v = 〈φk fk(x, t)〉K , (16)

with φk = (1, vk, 
1 |vk|2) representing the discrete collision invariants.

2
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Remark 2.

• The number N of discrete velocity is chosen as a compromise between precision and computational cost. If N is set too 
small then the flow cannot be described correctly: in general not all states can be reached in terms of temperature and 
mean velocity by a discrete ordinate method.

• A way to represent better the physical solution would be to change the support of the distribution function and the 
nodes where it is defined as a function of the solution itself [5,53,54]. Here, we do not discuss this possibility and we 
postpone this study to future work.

• The exact conservation of macroscopic quantities is impossible, because in general the support of the distribution func-
tion is non compact. This is the case for instance of the Maxwellian equilibrium distribution M f as well as the case 
of the Boltzmann collision integral defined on the entire space Rd . Thus, in order to conserve macroscopic variables, 
different strategies can be adopted, two of them are described in [56,78].

• In this work, we take the number of discrete points sufficiently large and we perform a truncation of the space such 
that the loss of conservation is negligible. However, we stress that all the schemes detailed in what follows can be 
adapted to the case in which perfect conservation is required [16].

4. Space discretization

We discuss now the space discretization of the system of equations (14), i.e. the space discretization of the discrete 
ordinate model. This is done via a particular WENO reconstruction. In particular, we discuss here how, given the set of 
cell averages corresponding to the distribution function values f n

k , one obtains a high order polynomial reconstruction 
representing the solution in the entire space. The same reconstruction for which we give details in the sole case of the 
distribution function, will be used next for obtaining high order approximations of the fluxes and of the source term 
represented by the collisional operator Q ( f ) in the finite volume framework. The basic idea of WENO reconstructions 
is the following: get high order polynomial through convex combinations of the point values of lower degree polynomials 
employing smaller stencils. The coefficients of the convex combination have some optimal linear values that are determined 
by satisfying accuracy requirements. Then, the real coefficients employed in the reconstruction are derived from the optimal 
values by a nonlinear procedure which permits to avoid oscillatory solutions, according to Godunov’s theorem [57]. The 
CWENO procedure is based on the same idea of producing an high-order cell centered non oscillating polynomials. It 
differs from WENO by the fact that the linear weights do not need to satisfy any accuracy requirements. Consequently, 
these values can be chosen independently from the mesh topology and also independently from the location of the points 
where the polynomials should be evaluated. Moreover, CWENO employs one single set of linear weights and thus one 
single set of nonlinear weights that are valid for any point in the cell. Thus, CWENO provides an entire reconstruction 
polynomial that is defined everywhere inside a cell. CWENO methods are relatively new techniques, examples of multi-
dimensional finite volume CWENO schemes have been presented in [73,74,45] for Cartesian meshes and in [87] on two-
dimensional quadrangular meshes. A comparison of different CWENO techniques has been recently forwarded in [22]. Up 
to our knowledge, CWENO reconstruction operators have never been applied to kinetic equations before. We give now the 
details about how the grid, which is used for the polynomial reconstruction, is realized.

4.1. Construction of the polygonal mesh

From now on, we consider two-dimensional arbitrarily shaped domains � and we detail the CWENO method on these 
domains. In order to discretize them, we employ a centroid based Voronoi-type tessellation made of N p non overlapping 
polygons Pi, i = 1, . . . Np . The idea is to represent the unknowns and in particular the distribution function f (x, v, t) via high 
order polynomials in each Voronoi polygon. The grid is constructed by setting the position of N p points, called generator 
points, uniformly inside � as well as on its boundary. Their coordinates are denoted as xci , i = 1, . . . , Np . Next, a Delaunay 
triangulation having these generators xci as vertexes of the triangles is realized. In this triangulation, the circumcircle of 
each triangle is not allowed to contain any other generator point. One can prove that, under this condition, the triangulation 
for every points is uniquely defined, except for circles containing more than three generator points. In this situation, the 
Delaunay triangulation may contain degenerate cases. A solution is presented in [15], which permits to give back uniqueness 
of the triangulation and it is employed here.

Once the primal triangulation is realized, then each generator point xci is associated to a centroid based Voronoi element 
Pi by connecting counterclockwise the centers of mass of all the Delaunay triangles having this generator point as a vertex. 
Now, given a Voronoi polygon Pi we denote by

V(Pi) = {vi1 , . . . , vi j , . . . , viNV i
}, (17)

the set of its NV i Voronoi neighbors, by

E(Pi) = {ei1 , . . . , ei j , . . . , eiN }, (18)

V i
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Fig. 1. Example of the construction of the Voronoi tessellation (black dotted line) starting from the Delaunay triangulation (red solid line). The generator 
point xc,i for polygon Pi is marked with a blue cross, while the barycenter xbi of the Voronoi control volume is represented by a green circle. To each 
generator point corresponds a Voronoi polygon. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the set of its NV i edges, and by

D(Pi) = {di1 , . . . ,di j , . . . ,diNV i
}, (19)

the set of its NV i vertexes ordered in a counter clock manner. Finally, the barycenter of a Voronoi polygon Pi is computed 
and denoted by xbi : with the center of mass defined as

xbi = 1

|Pi |
∫
Pi

x dx. (20)

Note that usually this does not coincide with the generator point (see Fig. 1 for a visual explanation).
Once the grid is set, we connect the barycenters xbi with each vertex of D(Pi) and we subdivide the Voronoi polygon Pi

in NV i triangles denoted as

T (Pi) = {Ti1 , . . . , Ti j , . . . , TiNV i
}. (21)

This sub-triangulation is in practice used to numerically integrate all needed data over the polygon. The above procedure 
completely defines the mesh, as the one shown in Fig. 2 for instance. Notice that the sub-triangulation used in our frame-
work allows each polygonal mesh to be split and properly employed for the discretization of the computational domain 
�. As such, even a simplex triangular mesh can be seen as a polygonal grid, in which each polygon is split into three 
sub-triangles. In the next paragraph, we employ this space mesh to describe the polynomial reconstruction.

4.2. Polynomial CWENO reconstruction

We discuss now the data interpolation. In this work we rely on a CWENO reconstruction strategy that can be designed 
along the lines introduced in [23]. Specifically, the WENO reconstruction algorithm makes use of the polynomial formulation 
[47], thus we do not adopt the original pointwise WENO scheme [67,60,96]. This approach allows more flexibility regarding 
the choice of the linear weights and it easily applies to general unstructured meshes in multiple space dimensions [45,55]
while achieving the formal order of accuracy.

The continuous distribution function f (x, v, t) has been replaced by the vector fK (x, t) in the previous Section. In this 
setting, the cell averages of each component of the vector representing the distribution function at time tn are obtained by

f̄ n
k,i = 1

|Pi|
∫

fk(x, tn)dx, ∀k ∈K, x ∈ Pi, i ∈ [1, Np], (22)
Pi
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Fig. 2. Example of an arbitrarily polygonal unstructured mesh obtained from the description in Section 4.1.

with |Pi | representing the volume of cell Pi . In what follows, wk,i(x, tn) will be the high order non-oscillatory polynomial 
representation of the distribution function f (x, v, t) in its discrete velocity sense, for each cell Pi, i = 1, .., Np . The recon-
struction can be summarized by the following three steps: definition of a high order optimal polynomial function, definition 
of a set of low order polynomials, nonlinear combination between the high order and the low order functions to get the 
highest accurate possible non oscillating reconstruction operators. In the description outlined hereafter, we leave freedom 
to the optimal polynomial to assume an arbitrary degree M . This provides a theoretical spatial accuracy of order (M + 1). 
The number of degrees of freedom (dof ) associated to such reconstruction depends clearly on the spatial dimension d. Here, 
we fix d = 2 consistently with the previous Section. Correspondingly, the number of unknowns M, or degrees of freedom, 
is given by

M(M,d) = 1

d!
d∏

l=1

(M + l) = 1

2
(M + 1)(M + 2) =M(M,2) =M(M). (23)

We proceed now in order to uniquely define the dof starting from the known cell averages values f̄ n
k,i of the distribution 

function at time tn . First, we compute the polynomial popt of degree M . Following [72,87], we consider a central stencil S̃i

composed of ne = d ·M(M) cells

S̃i =
ne⋃

l=1

P j(l), (24)

where j = j(l) denotes a mapping from the set of integers l ∈ [1, ne] to the global indexes j used to sort the cells in the 
mesh. The stencil S̃i is composed by the cell Pi where the solution needs to be computed and by its neighbors, added 
isotropically in space until the needed ne number of elements is reached (see Fig. 3). For convenience, we assume that 
j(1) = i so that the first cell in the stencil is always the element for which we are computing the reconstruction. As 
suggested in [6], on general unstructured grids, the total number of stencil elements ne must be larger than the number 
of degrees of freedom M(M) needed to reach the formal order of accuracy, hence a safety factor of d = 2 is considered. 
This is necessary to avoid ill-conditioning of the resulting reconstruction matrices. The polynomial popt,i relative to the 
stencil S̃i , is then defined by imposing that its cell average on each polygonal element P j matches the average of the 
distribution function f̄ n

k, j in a weak sense. This means that we impose the polynomial function to match exactly the value 
of the distribution function in the element Pi . Simultaneously, we ask for this function to minimize the L2 distance from 
values assumed by the distribution in the remaining elements of the stencil S̃i . In fact, since ne >M by definition, an 
overdetermined linear system is clearly obtained. As a consequence, it is not possible to exactly match the average values 
assumed by the distribution function in the cells as a result of the time evolution of the solution. Thus, a constrained 
least-squares approach, as the one proposed in [47], is used to define this function uniquely. This reads
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popt,i = argmin
p∈Pi

∑
P j∈S̃i

⎛
⎜⎝ f̄ n

k, j − 1

|P j|
∫
P j

p(x)dx

⎞
⎟⎠

2

, (25)

where Pi is the set of all polynomials PM of degree at most M , satisfying

Pi =

⎧⎪⎨
⎪⎩p ∈ PM : f̄ n

k,i = 1

|Pi |
∫
Pi

p(x)dx

⎫⎪⎬
⎪⎭⊂ PM . (26)

In other words, the function popt,i is, among all the possible polynomials of degree M , the only one that shares the same 
cell average of the distribution function in the cell Pi , i.e. f̄ n

k,i , while being close in the least-square sense to the other cell 
averages in the stencil S̃i . The polynomial popt,i , obtained from the above minimization step, is then practically expressed 
through the following conservative expansion

popt,i(x, tn) =
M∑

�=1

ϕ�(x)p̂n
l,i, (27)

where p̂n
l,i denote the unknown expansion coefficients of each reconstruction which employs the stencil S̃i . The basis func-

tions ϕ� are defined using a Taylor series in the space variables x of components (x1, x2) of degree M . This expansion is 
directly defined on the physical element Pi , expanded about its center of mass xbi and normalized by the characteristic 
length hi of the element (the radius of the circumcircle of Pi )

ϕ�(x1, x2)|Pi = (x1 − xbi ,1)
p

hp
i

(x2 − xbi ,2)
q

hq
i

−
∫
Pi

(x1 − xbi ,1)
p

hp
i

(x2 − xbi ,2)
q

hq
i

dx, (28)

� = 0, . . . ,M, (p,q) = 0, . . . , M, p + q ≤ M.

In the above construction, the integrals appearing in (25)-(28) are computed in each Voronoi polygon Pi by summing the 
contribution of each sub-triangle T ∈ T (Pi). This type of numerical integration obtained by decomposition of the polygonal 
surface into sub-elements is repeated each time a space integral appears in the rest of the article. On each sub-triangle, 
finally, we employ (M + 1)2 Gauss quadrature points defined by the conical product of the one-dimensional formulae 
[89].

In order to complete the CWENO reconstruction, one needs now a series of low degree polynomials with the scope of 
stabilizing the high degree reconstruction performed above. These are obtained starting from the Voronoi polygon Pi and 
by selecting a series of subsets of the NV i Voronoi neighbors V(Pi) to build up a new series of stencils. Thanks to these 
subsets, one then constructs exactly NV i interpolating polynomials of degree ML = 1. The stencils of these polynomials, S L

i

with L ∈ [1, Nn
V i

], contain exactly n̂e =M(ML) = 3 cells. Each S L
i always includes the central cell Pi and two consecutive 

neighbors belonging to V(Pi). The reconstruction stencils are indeed obtained as follows: the central stencil is filled starting 
with the element under consideration, then its Neumann neighbors are considered and finally other elements are recursively 
added as neighbors of these neighbors, until the desired total number of objects ne in the stencil is reached. The one-sided 
stencils are always composed by three elements in 2D, namely the element itself Pi , one direct neighbor P j and the other 
Neumann neighbor that is a direct neighbor of both Pi and P j . An example of stencils S̃i and S L

i for a polygon with Nn
V i

= 6
and M = 2 is reported in Fig. 3.

For each stencil S L
i , the linear polynomial pL

i is obtained through the unique solution of the system

pL
i ∈ P1 s.t. ∀Pl ∈ S L

i : f̄ n
k,l = 1

|Pl|
∫
Pl

pL
i (x)dx, (29)

where l indicates the mesh element belonging to the stencil S L
i . It remains to define the central polynomial p0

i . This is 
defined by difference between the polynomial popt,i and the linear combination of the polynomial functions pL

i of lower 
degree [23], that is

p0
i = 1

λ0

⎛
⎝popt,i −

NV i∑
L=1

λL,i pL
i

⎞
⎠ ∈ PM , (30)

where λ0,i, . . . , λNV are positive coefficients such that

i
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Fig. 3. Reconstruction stencils for second order degree optimal polynomials, i.e. M = 2. The total number of neighbors is ne = 12. The central P2 stencil is 
highlighted in gray, while five (out of six) one-sided P1 reconstruction stencils are shown with different colors.

NV i∑
s=0

λs,i = 1 := λsum. (31)

This is enough to assure conservation. The central polynomial p0
i defined by (30) guarantees that the linear combination of 

the polynomials p0
i , . . . , p

NVi
i with the coefficients λ0, . . . , λNV i

is equal to popt,i . This is the reason why these coefficients 
are typically called optimal coefficients and the accuracy of the CWENO reconstruction does not depend on the choice of the 
optimal coefficients. The linear weights are a normalization which sums up to unity, starting from the values λ0,i = C/λsum

for S0
i with C � 1 and λL,i = 1/λsum for all other polynomials. Here we set C = 200 and λs,i = 1. A last step consists in the 

standard WENO nonlinear combination of the polynomials pL
i with p0

i . Thus, the final polynomial f i,k(x, tn) is defined by 
this hybridization among all stencils s ∈ [0, NV i ]

f i,k(x, tn) =
NV i∑
s=0

ωs ps
i (x), (32)

where the nonlinear weights ωs are given by the standard expressions

ωs = ω̃s

NV i∑
s=0

ω̃s

, with ω̃s = λs

(σs + ε)r , (33)

where ε = 10−14 and r = 4 are chosen according to [47], and the oscillation indicators are given by

σs =
∑

l

(
p̂s

l,i

)2
, (34)

with p̂s
l,i representing the expansion coefficients (27) the polynomial defined on stencil s. As an effect of the nonlinear 

combination, one gets that in smooth areas, ωs � λs and then wk,i � popt,i , which means that optimal accuracy is recovered. 
On the other hand, close to a discontinuity, p0

i is expected to have oscillatory behaviors, leading to ωs � 0. This gives a low 
order non-oscillatory distribution function reconstruction employed to define the finite volume method.
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4.3. Finite volume approach

We discuss now the finite volume method approach. In particular, thanks to the CWENO reconstruction discussed above 
and employing the unstructured grid detailed in Section 4.1, we introduce a high order in space finite volume scheme. 
In Section 5, we explain how high order in time discretization is achieved. We start by integrating equation (14) on each 
control volume Pi obtaining

∂t

∫
Pi

fk dx +
∫
Pi

vk · ∇x fk dx =
∫
Pi

Q ( fk)dx, k = 1, .., N, i = 1, .., Np, (35)

where Q ( fk) represents a high order space reconstruction in the control volume Pi of the collision BGK operator

Q ( fk) = ν

ε
(Ek[U ] − fk)

Now, using the divergence theorem, we get

∂t

∫
Pi

fk dx = −
∫

∂ Pi

L( fk) · ni dS +
∫
Pi

Q ( fk)dx, k = 1, .., N, i = 1, .., Np, (36)

where we have denoted by ni the unit outward normal to the element Pi and by L( fk) the flux function (vk fk). The surface 
integral can be decomposed over the faces of ∂ Pi of the element Pi . This gives

∂t

∫
Pi

fk dx = −
NV i∑
j=1

∫
∂ Pi j

L( fk) · nij dS +
∫
Pi

Q ( fk)dx, k = 1, .., N, i = 1, .., Np, (37)

with ∂ Pi j denoting the face shared between element Pi and its neighbor P j . Finally, by introducing a first order in time 
explicit Euler discretization, we get

∫
Pi

f n+1
k dx =

∫
Pi

f n
k dx − �t

NV i∑
j=1

∫
∂ Pi j

L( f n
k ) · nij dS + �t

∫
Pi

Q ( f n
k )dx, k = 1, .., N, i = 1, .., Np, (38)

which is equivalent, using the finite volume interpretation, to

f̄ n+1
k,i = f̄ n

k,i − �t

|Pi|
NV i∑
j=1

∫
∂ Pi j

L( f n
k ) · nij dS + �t

|Pi|
∫
Pi

Q ( f n
k )dx, k = 1, .., N, i = 1, .., Np . (39)

Now, in order to obtain a high order in space scheme, we employ the CWENO reconstruction presented in the previous 
paragraph. Thus, the distribution function f n

k at time tn in Eqn. (38) is replaced by the high order polynomial function, 
namely f n

k,i = f i,k(x, tn) in each element Pi according to (32). This gives the cell average values for every discrete velocity 
at time tn+1

f̄ n+1
k,i = 1

|Pi |
∫
Pi

f n+1
k,i dx, (40)

used for the next CWENO reconstruction at the next time level.
It remains to detail the boundary fluxes which permits to share the information between the neighbors. These are 

obtained by the Rusanov flux [86] which reads

L( f n
k,i) · n =L( f n,−

k,i , f n,+
k,i ) · n, (41)

where ( f n,−
k,i ) is the inner and ( f n,+

k,i ) is the outer high order boundary extrapolated values and

L( f n,−
k,i , f n,+

k,i ) · n = 1

2

(
L( f n,+

k,i ) + L( f n,−
k,i )
)

· nij − 1

2
smax

(
f n,+
k,i −n,−

k,i

)
, (42)

with smax denoting the maximum eigenvalue of the system corresponding to max
K

(|vk|) and nij representing the unit out-

ward pointing normal vector to the cell boundary. The above scheme, apart from being only first order in time, suffers from 
the stiffness of the equation when the Knudsen number is small. Next, wed discuss high order time discretizations and a 
remedy to the stiffness of the kinetic equations.
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Fig. 4. P ε is the original singular perturbation problem (kinetic model) and P ε
�t its numerical approximation characterized by a discretization parameter 

�t . The asymptotic-preserving (AP) property corresponds to the request that P ε
�t is a consistent discretization of P 0 (the compressible Euler equations) as 

ε → 0 independently of �t .

5. Time discretization

We discuss, in this part, how to improve the time discretization. This is done, as anticipated in the Introduction, through 
the use of a particular class of Runge-Kutta schemes called Implicit-Explicit (IMEX) Runge-Kutta methods [3,83,42]. We 
recall that one of the major difficulties in solving kinetic equations is related to the capability of handling the different 
space and time scales characterizing the physical model. In particular, for the problems we are interested in, situations close 
to the so-called fluid regimes arise frequently. In these cases, the mean free path between two collisions is very small, thus 
it translates in a small value of the scaling parameter ε. From the numerical point of view, this implies that the problem 
becomes stiff. In the limit ε → 0, we formally obtain that the kinetic equation is equivalent to the compressible Euler 
macroscopic fluid equations. For small but non zero values of the Knudsen number, the evolution equation for the moments 
can be derived and it originates the compressible Navier-Stokes equations (see Section 2).

Our aim is precisely to work with schemes that are capable of capturing the fluid-limit without time step limitations due 
to the fast scale dynamic. This request is equivalent to the notion of asymptotic-preserving (AP) schemes [43,30,31,69,46,13]. 
A frequently adopted formal definition for such schemes [68,83,42] in the context of kinetic equations close to the fluid 
limit that we recall here says that: a consistent time discretization method of a given step size �t is AP if, independently of 
�t , in the limit ε → 0 becomes a consistent time discretization method for the compressible Euler equations. If, in addition, 
the scheme preserves the order of accuracy in time in the stiff limit, we say that the scheme is asymptotically accurate (AA). 
Fig. 4 depicts the standard diagram which AP methods obey to. We introduce now the general formulation of an IMEX 
scheme for the kinetic equations. To this aim, we use the finite volume formulation (39) of our method which we recall 
here for clarity

f̄ n+1
k,i = f̄ n

k,i − �t

|Pi|
NV i∑
j=1

∫
∂ Pi j

L( f n
k,i) · nij dS + �t

|Pi |
∫
Pi

Q ( f n
k,i)dx, k = 1, .., N, i = 1, .., Np, (43)

where the high order CWENO reconstruction f n
k,i substitutes the continuous in space functions f n

k in the fluxes and source 
term. The general IMEX setting reads

F̄ (l)
k,i = f̄ n

k,i − �t
l−1∑

m=1

ãlm〈L(F (m)

k,i )〉x + �t
ι∑

m=1

alm〈Q (F (m)

k,i )〉x (44)

f̄ n+1
k,i = f̄ n

k,i − �t
ν∑

m=1

w̃m〈L(F (m)

k,i )〉x + �t
ι∑

m=1

wm〈Q (F (m)

k,i )〉x, (45)

where F̄ (l)
k,i are the so-called stage values of the Runge-Kutta method which identify the cell averages of the solution at 

different time levels between [tn, tn+1]. Correspondingly, the quantities F (l)
k,i are their high order reconstruction counterparts. 

Using these values it is possible to determine the quantity

〈L(F (l)
k,i)〉x = 1

|Pi |
NV i∑
j=1

∫
∂ Pi j

L(F (l)
k,p) · nij . (46)

Moreover, we have that

〈Q (F (l)
k,i)〉x = 1

|Pi|
∫

Q (F (l)
k,i)dx, (47)
Pi



W. Boscheri, G. Dimarco / Journal of Computational Physics 422 (2020) 109766 13
where the integral is obtained by a suitable Gauss formula in which for every discrete velocity k the cell average is substi-
tuted with its high order polynomial reconstruction in the cell Pi . From (47), it is clear that the direct application of such 
method is very difficult in practice. This, in fact, would need the inversion of a nonlinear system involving the operator 
〈Q (F (l)

k,i)〉x at each stage of the Runge-Kutta time stepping. We will come back to this question later to find a remedy to 
this situation. Let before introduce the matrices Ã = (ãlm), ãlm = 0 for m ≥ l and A = (alm). They are ι × ι matrices such 
that the resulting scheme is explicit in L( fk), and implicit in Q ( fk). An IMEX Runge-Kutta scheme is characterized by these 
two matrices and by the coefficient vectors w̃ = (w̃1, .., w̃ι)

T , w = (w1, .., wι)
T . The type of implicit schemes we consider 

are all such that alm = 0, for m > l: this permits to assure that the transport term is always evaluated explicitly and it is 
of crucial importance for reducing the computational effort. We refer to them as to DIRK implicit methods. Classically, the 
schemes can be efficiently resumed by a double Butcher tableau

c̃ Ã

w̃ T

c A

w T

where the coefficients c̃ and c are given by the classical relation c̃l =
l−1∑

m=1

ãlm , cl =
l∑

m=1

alm . We refer to [3,83] for more 

details on the order conditions for such methods. As previously stated, the proposed IMEX schemes require the inversion of 
the collision operator, which cannot be done directly due to the nonlinear polynomial reconstruction needed in the finite 
volume setting. To that aim, we observe that this high order integration can be conveniently written as

〈Q (F (l)
k,i)〉x = 1

|Pi|
∫
Pi

Q (F (l)
k,i)dx = Q ( F̄ (l)

k,i) +O(�x2), (48)

where �x is the typical mesh size and F̄ (l)
k,i are the cell average quantities at the stage l. Then the time integrator can be 

recast as

F̄ (l)
k,i = f̄ n

k,i − �t
l−1∑

m=1

ãlm

(
〈L(F (m)

k,i )〉x + �Q (F (m)

k,i )
)

+ �t
l∑

m=1

alm Q ( F̄ (m)

k,i ) (49)

f̄ n+1
k,i = f̄ n

k,i − �t
ν∑

m=1

w̃m

〈
L(F (m)

k,i )〉x + �Q (F (m)

k,i )
)

+ �t
ι∑

m=1

wm Q̄ ( F̄ (m)

k,i ), (50)

where the quantities �Q (F (m)

k,i ) are given by

�Q (F (m)

k,i ) = 〈Q (F (m)

k,i )〉x − Q ( F̄ (m)

k,i ), (51)

i.e. they represent the difference between the high order evaluation of the source term and its cell average and are taken 
explicit in the IMEX formulation. This permits a direct evaluation of the implicit terms without resorting to the approximate 
solution of nonlinear systems despite the nonlinearity of the function which defines the equilibrium state M f (x, v, t). To 
better understand this, let us remark that the stage evaluation of the cell average of the distribution function (49) can be 
rewritten as

F̄ (l)
k,i = f̄ n

k,i − �t
l−1∑

m=1

ãlm

(
〈L(F (m)

k,i )〉x + �Q (F (m)

k,i )
)

+ �t
l∑

m=1

alm Q ( F̄ (m)

k,i ) + �t

∫
Pi

ν

ε
(Ek[Ū (l)

i ] − F̄ (l)
k,i)dx, (52)

where the only implicit term is the diagonal factor 
ν

ε
(Ek[Ū (l)

i ] − F̄ (l)
k,i) in which Ek[Ū (l)

i ] depends only on the first three 

moments of the distribution function Ū (l)
i . These are easily obtained by integrating in velocity space the cell centered values 

of the distribution function

Ū (l)
i =

∑
k

φk F̄ (l)
k,i �v = 〈φ F̄ (l)

i 〉K . (53)

Once these values are given and the cell centered values of the Maxwellian distribution are computed, then the integrals in 
(52) can all be directly evaluated in the case of the cell average values and by using a suitable Gauss integration formula in 
the case in which the CWENO polynomials have to be integrated. Finally, (52) can also be directly computed by moving on 
the left hand side the sole term which remains implicit: F̄ (l) . To have a completely determined method, it remains to explain 
k,i
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how the moments Ū (l)
i are obtained. This is done by integrating equation (52) against the discrete collision invariants φk in 

velocity space which gives

〈φ F̄ (l)
i 〉K = 〈φ f̄ n

i 〉K − �t
l−1∑

m=1

ãlm〈φ〈L(F (m)

k,i )〉x〉K . (54)

As a consequence, Ū (l)
i and thus Ek[Ū (l)

i ] can be explicitly evaluated and then the scheme (49)-(50) is explicitly solvable. 
This concludes the presentation of the scheme. The next part is devoted to some analysis of the new methods proposed.

5.1. Properties of the IMEX schemes

We want now to derive conditions for these new IMEX schemes to be AP and asymptotically accurate. Some preliminary 
definitions are necessary, see [42] for details.

Definition 1. We call an IMEX-RK method of type A if the matrix A ∈Rι×ι is invertible, or equivalently aii �= 0, i = 1, . . . , ι. 
We call an IMEX-RK method of type CK if the matrix A can be written as

A =
⎛
⎝ 0 0

a Â

⎞
⎠ , (55)

with a = (a21, . . . , aι1)
T ∈ R(ι−1) and the submatrix Â ∈ R(ι−1) × (ι−1) invertible, or equivalently aii �= 0, i = 2, . . . , ι. In the 

special case a = 0, w1 = 0 the scheme is said to be of type ARS and the DIRK method is reducible to a method using ι − 1
stages.

We will also make use of the following representation of the matrix Ã in the explicit Runge-Kutta method

Ã =
⎛
⎝ 0 0

ã ˆ̃A

⎞
⎠ , (56)

where ã = (ã21, . . . , ̃aι1)
T ∈ Rι−1 and ˆ̃A ∈ Rι−1×ι−1.

Definition 2. The IMEX-RK method is said to be globally stiffly accurate (GSA) if

aνi = wi, ãνi = w̃i, i = 1, . . . , ι (57)

Note that for GSA schemes the numerical solution is the same as the last stage value, namely f̄ n+1
k,i = F̄ (ι)

k,i . We have the 
following result

Lemma 1. If the IMEX method (49)-(50) is of type A and satisfies

w̃ T = w T A−1 Ã, (58)

then in the limit ε → 0, it becomes the explicit RK scheme in time characterized by ( Ã, w̃, ̃c) applied to the limit Euler system (6).

Proof. First we rewrite the schemes in compact form, using the vector notation

F̄k,i = f̄ n
k,ie + �t Ã

(
〈L(Fk,i)〉x + �Q (Fk,i)

ε

)
+ �t

ε
A Q ( F̄k,i) (59)

f̄ n+1
k,i = f̄ n

k,i + �t w̃ T
(

〈L(Fk,i)〉x + �Q (Fk,i)

ε

)
+ �t

ε
w T Q ( F̄k,i), (60)

where we have redefined the source term by Q̃ ( f ) = Q ( f )

ε
and we have omitted the tildes, e = (1, 1, .., 1)T ∈ Rι , F̄ i,k =

( F̄ (1)

i,k , . . . , F̄ (ι)
i,k)T , Q ( F̄k,i) = (Q ( F̄ (1)

k,i ), . . . , Q ( F̄ (ι)
k,i ))

T , �Q (Fk,i) = (�Q (F (1)

k,i ), . . . , �Q (F (ι)
k,i ))

T and 〈L(Fk,i)〉x = (〈L(F (1)

k,i )〉x,

. . . , 〈L(F (ι)
k,i )〉x). Now let us rewrite equation (59) in the following form

ε F̄k,i = ε f̄k,ie + ε�t Ã

(
1
�Q (Fk,i) + 〈L(Fk,i)〉x

)
+ �t A Q ( F̄k,i). (61)
ε
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Now by construction A is invertible and thus we can solve for Q ( F̄k,i) to get

�t Q ( F̄k,i) = εA−1
(

F̄k,i − f̄ n
k,ie − �t Ã

(
1

ε
�Q (Fk,i) + 〈L(Fk,i)〉x

))
, (62)

and letting ε → 0 we get

Q ( F̄k,i) = −A−1 Ã�Q (Fk,i). (63)

Finally, since A−1 Ã is lower triangular with diagonal elements equal to zero we get

Q ( F̄ (l)
k,i) = 0 ⇒ F̄ (l)

k,i = Ek[Ū (l)
i ], l = 1, . . . , ι. (64)

Thus (49)-(50) becomes the explicit Runge-Kutta method applied to the limiting Euler system (6). Let now analyze the 
behavior of the numerical solution. Inserting (62) into (60) we obtain

f̄ n+1
k,i = f̄ n

k,i + �t w̃ T
(

〈L(Fk,i)〉x + �Q (Fk,i)

ε

)
+ w T A−1

(
F̄k,i − f̄ n

k,ie − �t Ã

(
1

ε
�Q (Fk,i) + 〈L(Fk,i)〉x

))

which gives

f̄ n+1
k,i = f̄ n

k,i

(
1 − w T A−1e

)
+ �t

(
w̃ T − w T A−1 Ã

)(1

ε
�Q (Fk,i) + 〈L(Fk,i)〉x

)
+ w T A−1 F .

Using now the assumption (58) we get

f̄ n+1
k,i = f̄ n

k,i

(
1 − w T A−1e

)
+ w T A−1 F , (65)

which permits to pass to the limit ε → 0 in (59)-(60). �
Note that condition (58) is automatically satisfied if the IMEX scheme is GSA. In this case, we have f̄ n+1

k,i = Ek[Ūn+1
i ] at 

the discrete level when ε → 0. Note also that the condition w̃ T = w T A−1 Ã is very important since if it is not verified in 
the limit ε → 0 the solution blows up.

In the case of IMEX scheme of type CK we have a weaker result. Before addressing this point, we need an additional 
definition.

Definition 3. The initial data are said to be consistent or well prepared with the limiting Euler system if

f (x, v, t = 0) = M f (x, v, t = 0) + gε(x, v, t = 0), lim
ε→0

gε(x, v, t = 0) = 0, (66)

where the function g(x, v, t) indicates the perturbation from the equilibrium state.

We then have the following Lemma.

Lemma 2. If the IMEX scheme (49)-(50) is of type CK and GSA then for consistent initial data in the limit ε → 0 scheme (49)-(50)
becomes the explicit RK scheme characterized by ( Ã, w̃, ̃c) applied to the limit Euler system (6).

Proof. The IMEX scheme can be written as

F̄ (1)

k,i = f̄ n
k,i

ˆ̄Fk,i = f̄ n
k,i ê + �tã

(
1

ε
�Q (F (1)

k,i ) + 〈L(F (1)

k,i 〉x)

)
+ �t ˆ̃A

(
1

ε
�Q ( F̂k,i) + 〈L( F̂k,i)〉x

)
(67)

+ �t

ε
aQ ( F̄ (1)

k,i ) + �t

ε
Â Q ( ˆ̄Fk,i),

f̄ n+1
k,i = f̄ n + �t w̃1

(
1

ε
�Q (F (1)

k,i ) + 〈L(F (1)

k,i )〉x

)
+ �t ˆ̃w T

(
1

ε
�Q ( F̂k,i) + 〈L( F̂k,i)〉x

)
(68)

+ w1
�t

Q ( F̄ (1)

k,i ) + ŵ T �t
Q ( ˆ̄Fk,i).
ε ε
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Solving now, the second equation in (67) for Q ( ˆ̄Fk,i) we get

�t Q ( ˆ̄Fk,i) = ε Â−1
[

ˆ̄Fk,i − f̄ n
k,i ê − �t ˆ̃A

(
1

ε
�Q ( F̂k,i) + 〈L( F̂k,i)〉x

)
− �tã

(
1

ε
�Q ( f n

k,i) + 〈L( f n
k,i)〉x

)]
(69)

− �t Â−1aQ ( f̄ n
k,i).

As ε → 0 we obtain

Q ( ˆ̄Fk,i) = − Â−1
( ˆ̃A�Q ( F̂k,i) + ã�Q ( f n

k,i)
)

− Â−1aQ ( f̄ n
k,i). (70)

Now since f̄ n
k,i is consistent in the limit ε → 0 we have f̄ n

k,i = Ek[Ūn
i ]. This implies that Q ( f̄ n

k,i) = 0 and �Q ( f n
k,i) = 0 and 

(70) reduces to

Q ( ˆ̄Fk,i) = − Â−1 ˆ̃A�Q ( F̂k,i) (71)

which thanks to the fact that Â−1 ˆ̃A is lower triangular with zero diagonal elements implies ˆ̄Fk,i = Ek[ ˆ̄Ui]. Moreover, since 
the scheme is GSA, we also have f̄ n+1

k,i = Ek[Ūn+1
i ] and thus at the next time step the initial value remains consistent. Finally, 

thanks to the projection of the cell averages over the corresponding cell average equilibrium, the moments system obtained 
from (49)-(50) integrating over the velocity space the cell average distributions corresponds to the explicit Runge-Kutta 
methods for the Euler equations. �

In the following, we consider three time integration schemes. The first one is the standard first order implicit-explicit 
Euler scheme for which we do not report the Butcher tableau. The second is the globally second order ARS(2,2,2) [3] scheme

0 0 0 0

γ γ 0 0

1 δ 1 − δ 0

δ 1 − δ 0

0 0 0 0

γ 0 γ 0

1 0 1 − γ γ

0 1 − γ γ

with γ = 1 − 1/
√

2 and δ = 1 − 1/(2γ ), while the third is the globally third order BPR(3,4,3) [12]

0 0 0 0 0 0

1 1 0 0 0 0

2/3 4/9 2/9 0 0 0

1 1/4 0 3/4 0 0

1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0

1 1/2 1/2 0 0 0

2/3 5/18 −1/9 1/2 0 0

1 1/2 0 0 1/2 0

1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

which is fourth order accurate in the implicit part. The three schemes share the common property of being globally stiffly 
accurate (GSA).

To conclude this part, it remains to discuss the time step limitations. To this aim, we precise that, in all the numerical 
simulations discussed in the next section, the time step is fixed according to

�t = 1

2

(
�x

maxK (|vk|)
)

, �x = min
i

√|Pi |. (72)

In the next Section, we show numerical results which employ the schemes here described.

6. Numerical results

In this section, we show the capability of the class of methods described above to deal with different fluid flows. We 
start our analysis by performing a set of numerical convergence tests both for the time and the space discretizations. These 
convergence studies are carried out in different fluid regimes which range from rarefied to dense situations. The second 
part of this section is devoted to study the behavior of the novel schemes in solving standard benchmark rarefied gas 
dynamics problems. Finally, the last part is dedicated to applications. We consider the flow around a NACA 0012 airfoil for 
two different angles of attack and for different values of the Knudsen parameter. This last test case is performed using an 
MPI parallelization of our algorithm. We stress that this kind of simulations can be performed only thanks to the arbitrarily 
shaped finite volume approach used, which permits to describe the generic geometry of the airfoil with a high level of 
details.
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Numerical boundary conditions. Due to the finite volume discretization of the transport operator, we rely on standard ghost 
cell technique for handling numerically the boundary conditions. We distinguish three types of boundary conditions, namely 
wall, inflow and outflow. According to [5], the ghost state f ghost

k,i of cell Pi which is associated to a wall boundary with 
inward pointing normal nij is computed as follows:

f ghost
k,i = αk,iEk[U w ], vk · nij > 0, (73)

with the accommodation coefficients α obtained in such a way that no mass flux goes across the boundary, i.e.

αk,i = −

∑
vk ·nij<0

vk · nij f n
k,i �v

∑
vk ·nij>0

vk · nij Ek[U w ]�v
. (74)

Here, the wall Maxwellian is given by

Ek[U w ] = 1

(2πθ)
exp

(−|uw − vk|2
2θ

)
, (75)

with uw = 0 for no-slip walls and T w a prescribed temperature of the wall. The quantity f n
k,i denotes the high order bound-

ary extrapolated value of the distribution function, that is computed using the CWENO reconstruction polynomial. This 
easily allows for higher order boundary conditions, since the ghost state is needed at each quadrature point used in the 
evaluation of the boundary integral for the numerical fluxes in the transport discretization.

Inflow boundary conditions are considered by simply assigning to the ghost cell the upstream Maxwellian distributions 
Ek[Uin] that have been precomputed according to prescribed values of the macro quantities. For outflow boundaries, up-
winding is adopted, therefore the internal state is copied to the ghost cell and the flux computed accordingly.

6.1. Numerical convergence studies

This part is dedicated to the convergence tests. We consider an isentropic vortex test case which has been proposed for 
the first time in [61] for the Euler equations of compressible gas dynamics. The computational domain is given by the box 
� = [0; 10] × [0; 10] with Dirichlet boundary conditions imposed everywhere. A set of non-overlapping polygonal control 
volumes of characteristic mesh size h(�) =

∑
i

√|Pi|/Np is used to discretize the computational domain, thus allowing the 

order of convergence to be determined. The velocity space is instead fixed to V = [−10; 10] × [−10; 10] and it is paved 
with a Cartesian grid of 900 equal elements. The initial condition is given by an homogeneous background field which is 
supplemented with a small perturbation. That is

U = (ρ, ux, u y, T ) = (1 + δρ, δux, δu y, δT ), (76)

where the perturbations for temperature δT , density δρ and velocity (δux, δu y) read

δT = − (γ − 1)β2

8γπ2
e1−r2

,

δρ = (1 + δT )
1

γ −1 − 1, (77)⎛
⎝ δux

δu y

⎞
⎠= β

2π
e

1−r2
2

⎛
⎝−(y − 5)

(x − 5)

⎞
⎠ .

We set the vortex strength to β = 5 and the ratio of specific heats γ = d/2 + 1 = 2 as previously stated according to the 
governing equations (1). Fig. 5 shows the initial density distribution of this smooth isentropic vortex on a triangular and on 
a polygonal unstructured mesh, enhancing the versatility of the approach proposed in this work in which simplex elements 
are nothing but a special case of general polygonal cells.

The errors are measured at the final time t f in the L1, L2 and L∞ discrete norms for respectively the density and the 
temperature as follows:

L1 =
∫
�

∣∣Uref (x, t f ) −Uh(x, t f )
∣∣dxdy, (78)

L2 =
√√√√∫

�

(
Uref (x, t f ) −Uh(x, t f )

)2
dxdy, (79)

L∞ = max
∣∣Uref (x, t f ) −Uh(x, t f )

∣∣ . (80)

�
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Fig. 5. Initial density distribution of the smooth isentropic vortex on two types of unstructured meshes used for studying the convergence of the CWENO-
IMEX schemes. A fourth order CWENO reconstruction has been computed on both triangles and general polygonal cells.

Here, Uh(x, t f ) represents the high order reconstructed solution for the macroscopic quantities obtained with our scheme, 
while Uref (x, t f ) is a prescribed reference solution. In the sequel, we measure three different kinds of convergence, namely 
convergence in (i) space, (ii) space-time and (iii) time discretization. More in details:

• If we operate in the stiff limit ε → 0 the reference solution is the exact solution, i.e. Uref (x, t f ) =Ue(x, t f ), which 
is given by the initial condition. In this situation, we consider a space-time measure of the error. Then, both a single 
space and a fully space-time convergence study are performed with the space-time convergence rates pLs

k (�x, �t) for 
the generic norm Ls (s = 1, 2, ∞) computed as

pLs
k (�x,�t) =

log
(

Ls,k−1
Ls,k

)
log
(

hk−1
hk

) . (81)

Here, hk−1 and hk represent two characteristic mesh sizes such that hk < hk−1.
• If ε �= 0, no analytical solution is available, hence convergence rates can only be extrapolated numerically. Therefore, a 

fixed discretization in both physical and phase-space is kept, while performing a time stepping refinement in order to 
properly check the time accuracy of the algorithm. Specifically, the reference solution is given by the numerical solution 
Uht (x, t f ) that has been computed with a smaller time step �tk , i.e. �tk < �tk−1, thus Uref (x, t f ) = Uht (x, t f ). In 
this case, a time measure of the error is considered, hence a time convergence study is performed. The time step is 
halved at each level of refinement, so that the evaluation of the time convergence rates pLs

k (�t) for the generic norm 
Ls (s = 1, 2, ∞) writes

pLs
k (�t) = log2

(
Ls,k−1

Ls,k

)
. (82)

The first analysis we perform consists in the verification of the high order CWENO reconstruction presented in Sec-
tion 4.2. In order to carry out this analysis, a sequence of four triangular grids with characteristic mesh size h(�) is used to 
compute the convergence of the spatial reconstruction at the final time t f = 0, that is no time evolution is performed. The 
results are presented in Table 2 which clearly show convergence from first up to fourth order of accuracy in space. In other 
words, we check that the macroscopic variables are approximated with the correct order of accuracy by the reconstruction 
f i,k(x, t) of (32). Successively, we perform a space-time numerical convergence on polygonal meshes for the case in which 
the Knudsen number is set to zero, i.e. in the fluid limit ε = 0. The results of this test are shown in Table 3 where the for-
mal order of convergence depending on the employed CWENO-IMEX scheme (one, two or three) is found at time t f = 0.1. 
Table 4 for ε = 10−3, 5 for ε = 10−2 and 6 for ε = 1 show instead that the theoretical time accuracy is reached for the 
different flow regimes at the final time t f = 9 · 10−3 when the flow is out of equilibrium. Again in these cases, the order 
one, two and three is achieved according to the choice of the IMEX scheme. Resuming, Table 2 demonstrates that the formal 
order of accuracy is obtained in space, while Tables 4, 5 and 6 show the achievement of the formal accuracy in time. Fully 
space-time convergences are then highlighted in Table 3, where the results confirm that the novel CWENO-IMEX schemes 
are up to third order accurate in both space and time. The details of the discretizations used in space and time for each 
convergence test are conveniently summarized by Table 1.
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Table 1
Setting of the discretization used for the convergence analysis in space, space-time and time of the novel CWENO-
IMEX schemes.

Space test (Table 2) Space-time test (Table 3) Time test (Tables 4-6)
Mesh type Triangular Polygonal Polygonal

Refinement level # elements Np # elements Np # elements Np time step �t
1 1298 667 1465 1.80 · 10−3

2 2292 2570 1465 9.00 · 10−4

3 5180 5707 1465 4.50 · 10−4

4 9192 10118 1465 2.25 · 10−4

Table 2
Numerical convergence results for the BGK model using the CWENO reconstruction from first 
up to fourth order of accuracy on a sequence of refined triangular meshes of size h(�). The 
errors are measured in L1, L2 and L∞ norm and refer to the variables ρ (density) and T
(temperature).

CWENO O1

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
2.77E-01 1.292E-01 - 4.606E-02 - 3.287E-02 -
2.09E-01 9.404E-02 1.1 3.317E-02 1.2 2.356E-02 1.2
1.39E-01 6.355E-01 1.0 2.253E-02 0.9 1.774E-02 0.7
1.04E-01 4.725E-02 1.0 1.684E-02 1.0 1.330E-02 1.0

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
2.77E-01 8.405E-01 - 2.185E-01 - 2.105E-01 -
2.09E-01 6.197E-01 1.1 1.581E-01 1.1 1.353E-01 1.6
1.39E-01 4.142E-01 1.0 1.068E-01 1.0 9.726E-02 0.8
1.04E-01 3.102E-01 1.0 8.027E-02 1.0 7.247E-02 1.0

CWENO O2

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
2.77E-01 3.909E-02 - 1.603E-02 - 2.421E-02 -
2.09E-01 2.060E-02 2.3 8.391E-03 2.3 1.450E-02 1.8
1.39E-01 9.621E-03 1.9 4.008E-03 1.8 9.432E-03 1.1
1.04E-01 5.529E-03 1.9 2.370E-03 1.8 5.684E-03 1.8

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
2.77E-01 2.395E-01 - 7.922E-02 - 1.237E-01 -
2.09E-01 1.300E-01 2.1 4.216E-02 2.2 7.788E-02 1.6
1.39E-01 5.912E-02 1.9 1.962E-02 1.9 3.251E-02 2.1
1.04E-01 3.292E-02 2.0 1.090E-02 2.0 2.287E-02 1.2

CWENO O3

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
2.77E-01 1.947E-02 - 7.999E-03 - 1.260E-02 -
2.09E-01 7.723E-03 3.3 3.053E-03 3.4 5.167E-03 3.1
1.39E-01 2.417E-03 2.9 9.909E-04 2.8 1.798E-03 2.6
1.04E-01 1.027E-03 3.0 4.224E-04 3.0 7.479E-04 3.1

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
2.77E-01 1.160E-01 - 4.160E-02 - 8.602E-02 -
2.09E-01 4.632E-02 3.2 1.154E-02 3.5 2.781E-02 4.0
1.39E-01 1.449E-02 2.9 5.062E-03 2.7 9.305E-03 2.7
1.04E-01 6.139E-03 3.0 2.116E-03 3.0 4.549E-03 2.5

CWENO O4

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
2.77E-01 7.722E-03 - 3.128E-03 - 7.870E-03 -
2.09E-01 2.373E-03 4.2 9.098E-04 4.3 2.069E-03 4.7
1.39E-01 4.790E-03 3.9 1.900E-04 3.8 5.403E-04 3.3
1.04E-01 1.397E-03 4.3 5.249E-05 4.5 1.492E-04 4.5

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
2.77E-01 4.873E-02 - 1.932E-02 - 7.623E-02 -
2.09E-01 1.377E-02 4.4 4.870E-03 4.8 1.416E-02 5.9
1.39E-01 2.920E-03 3.8 1.090E-03 3.7 3.262E-03 3.6
1.04E-01 8.754E-04 4.2 3.227E-04 4.2 1.191E-03 3.5
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Table 3
Numerical convergence results for the BGK model using CWENO-IMEX schemes from first 
up to third order at time t f = 0.1 with Kn = 0 on a sequence of refined polygonal meshes 
of size h(�). The errors are measured in L1, L2 and L∞ norm and refer to the variables ρ
(density) and T (temperature).

CWENO-IMEX O1 Kn = 0

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
3.83E-01 2.291E-01 - 8.151E-02 - 6.465E-02 -
1.96E-01 1.157E-01 1.0 4.137E-02 1.0 3.357E-02 1.0
1.32E-01 7.757E-02 1.0 2.769E-02 1.0 2.242E-02 1.0
9.90E-02 5.828E-02 1.0 2.087E-02 1.0 2.002E-02 0.4

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
3.83E-01 5.073E-01 - 1.769E-01 - 1.657E-01 -
1.96E-01 2.611E-01 1.0 9.170E-02 1.0 8.827E-02 0.9
1.32E-01 1.756E-01 1.0 6.170E-02 1.0 5.947E-02 1.0
9.90E-02 1.325E-01 1.0 4.682E-02 1.0 5.296E-02 0.4

CWENO-IMEX O2 Kn = 0

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
3.83E-01 5.721E-02 - 2.278E-02 - 2.991E-02 -
1.96E-01 1.087E-02 2.5 4.099E-03 2.6 6.541E-03 2.3
1.32E-01 4.214E-03 2.4 1.458E-03 2.6 2.239E-03 2.7
9.90E-02 2.224E-03 2.2 7.589E-04 2.3 1.512E-03 1.4

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
3.83E-01 1.852E-01 - 6.593E-02 - 7.779E-02 -
1.96E-01 3.390E-02 2.5 1.231E-02 2.5 1.574E-02 2.4
1.32E-01 1.179E-02 2.7 4.244E-03 2.7 7.824E-03 1.8
9.90E-02 5.929E-03 2.4 2.102E-03 2.5 3.121E-03 3.2

CWENO-IMEX O3 Kn = 0

h(�) ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
3.83E-01 6.270E-02 - 2.535E-02 - 3.247E-02 -
1.96E-01 1.052E-02 2.7 4.489E-03 2.6 7.139E-03 2.3
1.32E-01 3.154E-03 3.0 1.329E-03 3.1 2.244E-03 2.9
9.90E-02 1.337E-03 3.0 5.541E-04 3.1 1.061E-03 2.6

h(�) T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
3.83E-01 2.183E-01 - 7.634E-02 - 9.801E-02 -
1.96E-01 3.699E-02 2.7 1.365E-02 2.6 1.579E-02 2.7
1.32E-01 1.090E-02 3.1 3.988E-03 3.1 6.472E-03 2.2
9.90E-02 4.442E-03 3.1 1.620E-03 3.1 2.139E-03 3.9

6.2. Lax problem

In this part, we consider a classical Lax shock tube Riemann problem. This class of problems are widely adopted to 
validate numerical algorithms for the solution of the compressible Euler equations. Here, we consider the case in which 
fluid equations are valid and the case in which flow is rarefied and the solution departs from the standard left-propagating 
rarefaction wave, the intermediate contact discontinuity and the right-propagating shock wave. The essential feature one 
can observe in rarefied flows is the presence of a physical diffusion which mitigates the waves making the solution smooth. 
This kind of tests are interesting because they allow the approximation of a large suite of hyperbolic waves to be properly 
checked and, though intrinsically one-dimensional, they are absolutely non-trivial and multidimensional when applied to 
unstructured meshes, where in general the element edges are not aligned with the fluid motion.

The computational domain is the box � = [−1; 1] × [−0.05; 0.05], that is discretized with a total number of [100 × 10]
triangular control volumes with characteristic mesh size of h(�) = 0.02. Periodic boundary conditions are set in y-direction, 
while Dirichlet boundaries are imposed in the x-direction. The velocity space V = [−15; 15] × [−15; 15] counts a total 
number of 32 × 32 = 1024 regular Cartesian control volumes. The initial condition is given in terms of primitive variables 
U = (ρ, ux, u y, T ) and consists of two states, namely the left UL and the right UR state, that are separated at xD = 0:

UL =
(

0.445,0.698,0,
3.528

ρL

)
, UR =

(
0.5,0,0,

0.571

ρR

)
. (83)

The fully third order CWENO-IMEX scheme for running the Lax problem until the final time t f = 0.1 is employed with 
different values of the Knudsen number. Specifically, Fig. 6 shows the density distribution as well as a one dimensional cut 
along the x-axis with 200 points for density, horizontal velocity and temperature with ε = 5 · 10−5. Similar images have 
been obtained for ε = 5 · 10−4 in Fig. 7 and ε = 5 · 10−3 in Fig. 8. The numerical results are compared against a reference 
solution that has been obtained using the same IMEX Runge-Kutta method and a one-dimensional in space second order 
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Table 4
Numerical convergence results for the BGK model using CWENO-IMEX schemes from first up 
to third order at time t f = 0.009 with Kn = 10−3 on a polygonal mesh with characteristic 
mesh size h = 1/3. The errors are measured in L1, L2 and L∞ norm and refer to the variables 
ρ (density) and T (temperature).

CWENO-IMEX O1 Kn = 10−3

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 7.723E-06 - 2.376E-06 - 2.148E-06 -
4.50E-04 3.917E-06 1.0 1.204E-06 1.0 1.088E-06 1.0
2.25E-04 1.971E-06 1.0 6.059E-07 1.0 5.468E-07 1.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 1.842E-05 - 5.162E-06 - 6.830E-06 -
4.50E-04 9.270E-06 1.0 2.591E-06 1.0 3.374E-06 1.0
2.25E-04 4.649E-06 1.0 1.298E-06 1.0 1.677E-06 1.0

CWENO-IMEX O2 Kn = 10−3

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 3.158E-07 - 1.345E-07 - 2.398E-07 -
4.50E-04 8.461E-08 1.9 3.427E-08 2.0 5.775E-08 2.1
2.25E-04 2.189E-08 2.0 8.627E-09 2.0 1.406E-08 2.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 1.406E-06 - 4.814E-07 - 7.775E-07 -
4.50E-04 3.666E-07 1.9 1.231E-07 2.0 1.995E-07 2.0
2.25E-04 9.359E-08 2.0 3.103E-08 2.0 4.996E-08 2.0

CWENO-IMEX O3 Kn = 10−3

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
2.25E-04 - - - - - -
1.12E-05 2.017E-07 - 8.656E-08 - 1.921E-07 -
5.62E-05 3.816E-08 2.4 1.511E-08 2.5 3.067E-08 2.6
2.81E-05 6.212E-09 2.6 2.353E-09 2.7 4.513E-09 2.8

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
2.25E-04 - - - - - -
1.12E-05 7.263E-07 - 2.614E-07 - 4.837E-07 -
5.62E-05 1.389E-07 2.4 4.683E-08 2.5 8.381E-08 2.5
2.81E-05 2.274E-08 2.6 7.362E-09 2.7 1.274E-08 2.7

WENO scheme for the transport part on a very fine Cartesian grid composed by 1000 cells. The results show a perfect 
matching between the solutions for each stiffness setting, thus validating the approach here proposed.

6.3. Explosion problem

The explosion problem can be seen as a multidimensional extension of the classical Sod shock tube test case. The 
computational domain is the square of dimension � = [−1; 1] × [−1; 1], and the initial condition is composed of two 
different states (UL, UR), separated by a discontinuity at radius Rd = 0.5:⎧⎨

⎩UL =
(

1,0,0, 1
R ρL

)
r ≤ Rd,

UR =
(

0.125,0,0, 0.1
R ρR

)
r > Rd,

(84)

with the radial position r =
√

x2 + y2. The spatial domain is discretized by Np = 35186 Voronoi elements with characteristic 
mesh size h = 1/75, while the velocity space is composed of 1024 Cartesian cells ranging in the interval [−15; 15] ×
[−15; 15]. More than 300 million space-time degrees of freedom are thus involved by this simulation. The final time is 
chosen to be t f = 0.07, so that the shock wave does not cross the external boundary of the domain, where a transmissive 
boundary condition is set. The numerical results have been computed using the third order version of the CWENO-IMEX 
schemes presented in this work, and they are depicted in Fig. 9 for Knudsen number ε = 5 · 10−5, ε = 5 · 10−4 and ε =
5 · 10−3. Furthermore, the reference solution of the Euler equations, obtained as detailed in [14,93], is plot as well in order 
to appreciate the convergence towards the fluid regime in the stiff limit. The results show a 1D cut along the x-axis with 
200 points for density, horizontal velocity and temperature as well as a three-dimensional view of the density distribution. 



22 W. Boscheri, G. Dimarco / Journal of Computational Physics 422 (2020) 109766
Table 5
Numerical convergence results for the BGK model using CWENO-IMEX schemes from first up 
to third order at time t f = 0.009 with Kn = 10−2 on a polygonal mesh with characteristic 
mesh size h = 1/3. The errors are measured in L1, L2 and L∞ norm and refer to the variables 
ρ (density) and T (temperature).

CWENO-IMEX O1 Kn = 10−2

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 5.071E-06 - 1.494E-06 - 2.066E-06 -
4.50E-04 2.537E-06 1.0 7.455E-07 1.0 1.025E-06 1.0
2.25E-04 1.269E-06 1.0 3.724E-07 1.0 5.108E-07 1.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 1.707E-05 - 4.356E-06 - 6.788E-06 -
4.50E-04 8.766E-06 1.0 2.204E-06 1.0 3.355E-06 1.0
2.25E-04 4.448E-06 1.0 1.109E-06 1.0 1.668E-06 1.0

CWENO-IMEX O2 Kn = 10−2

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 1.751E-07 - 7.856E-08 - 1.753E-07 -
4.50E-04 4.333E-08 2.0 1.949E-08 2.0 4.440E-08 2.0
2.25E-04 1.078E-08 2.0 4.856E-09 2.0 1.117E-08 2.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 6.487E-07 - 2.129E-07 - 3.008E-07 -
4.50E-04 1.621E-07 2.0 5.322E-08 2.0 7.520E-08 2.0
2.25E-04 4.063E-08 2.0 1.329E-08 2.0 1.872E-08 2.0

CWENO-IMEX O3 Kn = 10−2

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 2.776E-08 - 1.138E-08 - 1.936E-09 -
4.50E-04 3.654E-09 2.9 1.494E-09 2.9 2.533E-09 2.9
2.25E-04 4.695E-10 3.0 1.916E-10 3.0 3.243E-10 3.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 7.443E-08 - 2.881E-08 - 4.487E-08 -
4.50E-04 9.941E-09 2.9 3.800E-09 2.9 5.915E-09 2.9
2.25E-04 1.287E-09 2.9 4.888E-10 3.0 7.606E-10 3.0

Notice that the solution exhibits excellent symmetry properties, which is not obvious due to the usage of an unstructured 
computational grid.

6.4. Fluid flow around NACA 0012 airfoil

Finally, as a last example we consider a problem closer to the physical reality. The aim of this test case is only to show 
the capability of the scheme to handle more complex geometries and real world phenomena, without analyzing any quan-
titative detail. We employ again our CWENO-IMEX scheme on unstructured grids to study the flow around a NACA 0012 
airfoil profile for different rarefied regimes. The airfoil is embedded in a computational domain � = [−5; 10] × [−4; 4], that 
is paved with Np = 6554 Voronoi control volumes in space. Two different angles of attack α of the airfoil are simulated, 
namely α = 0 and α = 20, as shown in Fig. 10. A constant density ρ0 = 1 is initially assigned to the fluid with a velocity 
field (ux(t = 0), u y(t = 0) = (15, 0). The ratio of specific heats is chosen to be γ = 1.4, so that the initial pressure reads 
p0 = 100/γ and the initial temperature is given by T = p0

ρ0
. The sound speed is computed as c =√γ T = 10 and the Mach 

number of the flow results to be M = 1.5, hence a supersonic regime is considered. Two different settings are presented: the 
first scenario deals with a Knudsen number ε1 = 10−4, while we set ε2 = 5 · 10−3 for the second simulation. The velocity 
space is defined by the Cartesian domain [−60; 60] ×[−60; 60], which is discretized using a grid composed of 40 × 40 con-
trol volumes. The third order version of CWENO-IMEX schemes is adopted for running the simulations up to the final time 
t = 0.5. Thus, the simulation size counts more than 100 million space-time degrees of freedom. For qualitative comparison 
purposes, the same simulations are also performed employing the compressible Navier-Stokes equations. Although the two 
models are different, the corresponding physical viscosity μ can be estimated as
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Table 6
Numerical convergence results for the BGK model using CWENO-IMEX schemes from first 
up to third order at time t f = 0.009 with Kn = 100 on a polygonal mesh with characteristic 
mesh size h = 1/3. The errors are measured in L1, L2 and L∞ norm and refer to the variables 
ρ (density) and T (temperature).

CWENO-IMEX O1 Kn = 100

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 4.037E-06 - 1.192E-06 - 2.002E-06 -
4.50E-04 2.007E-06 1.0 5.913E-07 1.0 9.900E-07 1.0
2.25E-04 1.000E-06 1.0 2.944E-07 1.0 4.923E-07 1.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 2.083E-05 - 5.079E-06 - 6.727E-06 -
4.50E-04 1.038E-05 1.0 2.526E-06 1.0 3.319E-06 1.0
2.25E-04 5.184E-06 1.0 1.259E-06 1.0 1.648E-06 1.0

CWENO-IMEX O2 Kn = 100

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 8.169E-08 - 4.431E-08 - 1.651E-07 -
4.50E-04 2.020E-08 2.0 1.096E-08 2.0 4.082E-08 2.0
2.25E-04 5.025E-09 2.0 2.726E-09 2.0 1.015E-08 2.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 2.233E-07 - 9.544E-08 - 1.816E-07 -
4.50E-04 5.525E-08 2.0 2.361E-08 2.0 4.459E-08 2.0
2.25E-04 1.374E-08 2.0 5.873E-09 2.0 1.106E-08 2.0

CWENO-IMEX O3 Kn = 100

�t ρL1 O(ρL1 ) ρL2 O(ρL2 ) ρL∞ ρL∞
1.80E-03 - - - - - -
9.00E-04 1.458E-09 - 6.453E-10 - 1.732E-09 -
4.50E-04 1.785E-10 3.0 7.903E-11 3.0 2.130E-10 3.0
2.25E-04 2.213E-11 3.0 9.783E-12 3.0 2.643E-11 3.0

�t T L1 O(T L1 ) T L2 O(T L2 ) T L∞ T L∞
1.80E-03 - - - - - -
9.00E-04 5.476E-09 - 2.411E-09 - 5.982E-09 -
4.50E-04 6.695E-10 3.0 2.943E-10 3.0 7.353E-10 3.0
2.25E-04 8.281E-11 3.0 3.637E-11 3.0 9.120E-11 3.0

μ = ε ρ T , (85)

thus obtaining μ1 = 7.142857 · 10−3 and μ2 = 3.571459 · 10−1, respectively. The associated Reynolds numbers are Re1 =
2100 and Re2 = 42. The results obtained for the Navier-Stokes model are computed using the same computational grid and 
relying on the same third order CWENO reconstruction technique, while the ADER paradigm allows for achieving third order 
time stepping, following [55]. Notice that one could directly use the expression (85) to define the collision operator in the 
BGK model, however we limit ourselves to adopt the choice ν = ρ as done for all the other test cases presented in this 
work.

Figs. 11 and 12 depict the results computed for the airfoil with angle of attack α = 0 with ε1 = 10−4 and ε2 = 5 · 10−3

respectively. Specifically, we show the density, the absolute value of the velocity and the temperature contours for BGK (left 
column) and for compressible Navier-Stokes (right column) models. We use 30 contour levels in the range [0.45; 2.35] for 
density, [1; 15] for velocity magnitude and [65; 105] for temperature. Results for α = 20 are then shown in Figs. 13-14, 
where one can appreciate a qualitative agreement between the two models, especially in the case with ε1 = 10−4. Different 
patterns for the shock wave can be seen, as well as the differences in temperature distribution are notable between the 
different Knudsen numbers, as expected.

The results shown in this part represent a first example of what can be studied with such high order method on un-
structured meshes. We postpone to future investigations a detailed study of the flow around airfoils with kinetic equations 
in which the drag and lift coefficients can be measured in details and compared with other numerical methods for conser-
vation laws, highlighting the limits of the fluid models.

6.5. Profiling

The code is written in Fortran language and parallelized using the standard MPI library. The physical space is parti-
tioned among different CPUs, while keeping the velocity space copied within each thread. The first step in the algorithm 
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Fig. 6. Lax shock tube problem with Kn = 5 · 10−5 at time t f = 0.1. Three dimensional view of density profile together with a 1D cut along the x-axis 
through the third order numerical results and comparison with exact solution for density, velocity in the x-direction and temperature.

is given by the generation of the computational grid, which is carried out as follows. The free graph partitioning software 
Metis/ParMetis [71] is applied to a primary coarse mesh made of simplex control volumes. Next, each thread performs a local
isotropic mesh refinement, thus each coarse triangular element is subdivided into a total number of NT = χ2 sub-triangles, 
with χ being a refinement factor which can be arbitrarily chosen. In order to generate a sufficiently extended layer of ghost 
cells needed for the numerical flux computation, each CPU produces also the fine sub-elements for all Voronoi neighbors of 
its own elements. Finally, the dual polygonal mesh is built fully in parallel by each thread separately, thus saving memory 
and exploiting the MPI architecture of non-shared memory. Such technique has also been used in the context of multidi-
mensional simplex meshes [45] achieving the generation of a grid composed of one billion of tetrahedra. Notice that the 
choice of the CWENO strategy is particularly well-suited because all one-sided reconstruction stencils only involve the first 
layer of Voronoi neighbors of an element. Therefore, this is enough to ensure a proper accomplishment of the reconstruction 
step even on MPI locally partitioned meshes. This would not be true in the case of standard WENO algorithms, where the 
lateral stencils are composed of much more elements depending on the reconstruction degree M , hence imposing a larger 
layer of ghost cells to be built and exchanged among different threads. In our approach the final computational grid is never
fully assembled, but each CPU only accounts for its partition supplemented with the required ghost cells.

Regarding the MPI communications needed while performing one time step of the numerical scheme, only the cell 
averages of the distribution functions must be exchanged before the CWENO reconstruction is carried out. Therefore, the 
number of stages in the IMEX time stepping determines the number of MPI communications that are needed.
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Fig. 7. Lax shock tube problem with Kn = 5 · 10−4 at time t f = 0.1. Three dimensional view of density profile together with a 1D cut along the x-axis 
through the third order numerical results and comparison with exact solution for density, velocity in the x-direction and temperature.

Table 7
Simulation parameters: number of elements in the physical space Np , number of 
elements in the velocity space Nv , polynomial degree of the spatial reconstruction 
M with associated degrees of freedom in space and time (M +1) +M(M) and total 
number of degrees of freedom Ndof = N p · Nv · ((M + 1) ·M(M)) of the simulation.

Test problem Np Nv M (M + 1) +M(M) Ndof

Lax 1764 1024 2 9 16’257’024
Explosion 35186 1024 2 9 324’274’176
NACA 6554 1600 2 9 94’377’600

Table 7 contains some information regarding the simulation parameters of the test cases shown in this work, namely 
number of elements in the physical space Np , number of elements in the velocity space Nv , polynomial degree of the spatial 
reconstruction M with associated degrees of freedom in space and time (M + 1) +M(M) and total number of degrees of 
freedom Ndof = Np · Nv · ((M +1) ·M(M)) of the simulation. Here, we have performed simulations with up to ≈ 325 millions 
of degrees of freedom, which undoubtedly require an efficient parallelization strategy.

Finally, Table 8 collects the computational times referred to the main stages of the algorithm, that are as follows:

• CWENO reconstruction step (see Section 4.2);
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Fig. 8. Lax shock tube problem with Kn = 5 · 10−3 at time t f = 0.1. Three dimensional view of density profile together with a 1D cut along the x-axis 
through the third order numerical results and comparison with exact solution for density, velocity in the x-direction and temperature.

• transport step in the finite volume scheme (39), i.e. evaluation of high order numerical fluxes across boundary cells 

given by the term 
NVi∑
j=1

∫
∂ Pi j

L( f n
k ) · nij dS;

• computation of the collision operator, including high order moments and volume integral, that is the term 
�t

|Pi| ×∫
Pi

Q ( f n
k ) dx in (39).

All simulations have been run in parallel on 128 Intel Xeon Gold processors with 256 GB of RAM. The evaluation of the 
numerical fluxes is the most expensive part of the algorithm that covers about 90% of the entire computational time, 
which is due to the high order integration based on Gaussian formulae and on the simplex splitting of the polygonal 
cells. This suggests to further investigate how to optimize the numerical integration across cell boundaries of arbitrary 
shaped closed control volumes. The CWENO reconstruction step also requires some computational resources as well as the 
evaluation of the collision operator, even though the latter is the part of the entire scheme which needs less computational 
resources.
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Fig. 9. Explosion problem with different Knudsen number, namely Kn = 5 · 10−5 (red line), Kn = 5 · 10−4 (blue line) and Kn = 5 · 10−3 (green line) at final 
time t f = 0.07. Three dimensional view of density profile for the case with Kn = 5 · 10−5 (top left) is plot together with a 1D cut along the x-axis through 
the third order numerical results for density, horizontal velocity and temperature.

Table 8
Computational times in seconds [s] needed for the main steps of the algorithm: CWENO recon-
struction stage, transport stage (evaluation of high order numerical fluxes across cell boundaries) 
and collision operator (evaluation of high order volume integral) in the finite volume scheme (39). 
Corresponding percentages w.r.t. the total computational time are given in brackets.

Test problem Reconstruction Transport Collision operator

Lax (Kn = 5 · 10−3) 6’112 [≈ 9.7 %] 56’344 [≈ 89.6 %] 460 [≈ 0.7 %]
Lax (Kn = 5 · 10−4) 6’055 [≈ 9.6 %] 56’274 [≈ 89.6 %] 474 [≈ 0.8 %]
Lax (Kn = 5 · 10−5) 6’081 [≈ 9.7 %] 56’403 [≈ 89.6 %] 467 [≈ 0.7 %]

Explosion (Kn = 5 · 10−3) 87’161 [≈ 7.0 %] 1’145’428 [≈ 92.2 %] 9’365 [≈ 0.8 %]
Explosion (Kn = 5 · 10−4) 87’262 [≈ 7.0 %] 1’145’314 [≈ 92.2 %] 9’301 [≈ 0.7 %]
Explosion (Kn = 5 · 10−5) 87’159 [≈ 7.0 %] 1’147’199 [≈ 92.2 %] 9’331 [≈ 0.8 %]

NACA (Kn = 1 · 10−4, α = 0) 109’333 [≈ 4.0 %] 2’613’320 [≈ 95.4 %] 16’659 [≈ 0.6 %]
NACA (Kn = 5 · 10−3, α = 0) 89’805 [≈ 3.9 %] 2’202’802 [≈ 95.5 %] 13’587 [≈ 0.6 %]
NACA (Kn = 1 · 10−4, α = 20) 110’707 [≈ 3.9 %] 2’727’072 [≈ 95.5 %] 16’775 [≈ 0.6 %]
NACA (Kn = 5 · 10−3, α = 20) 101’746 [≈ 4.0 %] 2’430’181 [≈ 95.4 %] 15’222 [≈ 0.6 %]
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Fig. 10. Computational mesh used for the simulation of the flow around NACA 0012 airfoil with angle of attack α = 0 (left) and α = 20 (right). The 
computational domain is the box � = [−5; 10] × [−4; 4] and it is discretized with a total number of Voronoi elements NE = 6518 and NE = 6554, 
respectively, with a characteristic mesh size h = 0.5. The airfoil profile has been approximated using 50 nodes. Zoom around the airfoil is shown in the 
bottom row.

7. Conclusions

In this work, we have presented a high order in space and time finite volume class of methods for solving the BGK 
kinetic equation on arbitrarily shaped elements in space. The method is based on a discrete ordinate approach for discretiz-
ing the velocity space, on a CWENO polynomial reconstruction in space on arbitrarily unstructured control volumes and on 
a Implicit-Explicit Runge-Kutta asymptotic preserving time discretization. The proposed IMEX schemes have been adapted 
to the finite volume framework and their properties in terms of asymptotic accuracy and preservation have been studied. 
Up to our knowledge, this is the first example in which such WENO reconstruction which enjoy the possibility of working 
with very small stencils is used for solving kinetic equations on unstructured meshes in a multidimensional setting. The 
flexibility due to the type of employed mesh together with the efficiency related to the polynomial reconstruction are of 
paramount importance when dealing with realistic simulations which use kinetic equations, due to the intrinsic computa-
tional complexity of these models. All these technologies are combined with the more advanced state of the art concerning 
the time discretization of kinetic models in stiff regimes guaranteeing stability, accuracy and preservation of the asymptotic 
state to the full scheme.

In the numerical part, we tested the methods verifying that the theoretical order of convergence is indeed guaranteed 
by our schemes for different flow regimes from dense to rarefied fluids. A set of benchmark problems are also reported 
showing the capability and the robustness of the schemes, and a more realistic simulation which is not possible to perform 
on regular structured grids is run on a MPI parallelization of our code providing evidence that our approach can be applied 
for large scale simulations as well. Profiling analysis and simulation details have finally been provided at the end of the 
paper, resuming the computational resources needed by each main step of the algorithm.

In the future, we would like to extend the methods here presented in several directions. We intend to work on the full 
three dimensional case, to increase the time precision by using linear multistep approaches which allow to reach up to fifth 
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Fig. 11. Numerical results at time t = 0.5 with airfoil angle α = 0 with third order CWENO-IMEX for BGK with ε1 = 10−4 (left column) and with third order 
CWENO-ADER for Navier-Stokes with μ1 = 7.142857 ·10−3 (right column). Density (top row), magnitude of the velocity field (middle row) and temperature 
(bottom row) are displayed.
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Fig. 12. Numerical results at time t = 0.5 with airfoil angle α = 0 with third order CWENO-IMEX for BGK with ε1 = 5 · 10−3 (left column) and with third 
order CWENO-ADER for Navier-Stokes with μ1 = 3.571459 · 10−1 (right column). Density (top row), magnitude of the velocity field (middle row) and 
temperature (bottom row) are displayed.
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Fig. 13. Numerical results at time t = 0.5 with airfoil angle α = 20 with third order CWENO-IMEX for BGK with ε1 = 10−4 (left column) and with third 
order CWENO-ADER for Navier-Stokes with μ1 = 7.142857 · 10−3 (right column). Density (top row), magnitude of the velocity field (middle row) and 
temperature (bottom row) are displayed.
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Fig. 14. Numerical results at time t = 0.5 with airfoil angle α = 20 with third order CWENO-IMEX for BGK with ε1 = 5 · 10−3 (left column) and with 
third order CWENO-ADER for Navier-Stokes with μ1 = 3.571459 · 10−1 (right column). Density (top row), magnitude of the velocity field (middle row) and 
temperature (bottom row) are displayed.
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order of accuracy in time. We want also to consider arbitrarily shaped grids in velocity space and to deal with more realistic 
kinetic models such as the full Boltzmann operator. An interesting direction of research consists also in using such method 
to perform a detailed study of the flow around airfoils employing kinetic models.
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